Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Int Arch Occup Environ Health ; 97(4): 473-484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38530481

RESUMO

OBJECTIVE: Whether coal mine dust exposure increases cardiovascular diseases (CVDs) risk was rarely explored. Our objective was to examine the association between coal mine dust exposure and cardiovascular risk. METHODS: We estimated cumulative coal mine dust exposure (CDE) for 1327 coal miners by combining data on workplace dust concentrations and work history. We used brachial-ankle pulse wave velocity (baPWV, a representative indicator of arterial stiffness) and ten-year atherosclerotic cardiovascular disease (ASCVD) risk to assess potential CVD risk, exploring their associations with CDE. RESULTS: Positive dose-response relationships of CDE with baPWV and ten-year ASCVD risk were observed after adjusting for covariates. Specifically, each 1 standard deviation (SD) increase in CDE was related to a 0.27 m/s (95% CI: 0.21, 0.34) increase in baPWV and a 1.29 (95% CI: 1.14, 1.46) elevation in OR (odds ratio) of risk of abnormal baPWV. Moreover, each 1 SD increase in CDE was associated with a 0.74% (95% CI: 0.63%, 0.85%) increase in scores of ten-year ASCVD and a 1.91 (95% CI: 1.62, 2.26) increase in OR of risk of ten-year ASCVD. When compared with groups unexposed to coal mine dust, significant increase in the risk of arterial stiffness and ten-year ASCVD in the highest CDE groups were detected. CONCLUSION: The study suggested that cumulative exposure to coal mine dust was associated with elevated arterial stiffness and ten-year ASCVD risk in a dose-response manner. These findings contribute valuable insights for cardiovascular risk associated with coal mine dust.


Assuntos
Doenças Cardiovasculares , Minas de Carvão , Exposição Ocupacional , Rigidez Vascular , Humanos , Doenças Cardiovasculares/epidemiologia , Índice Tornozelo-Braço , Análise de Onda de Pulso , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Poeira , Carvão Mineral , China/epidemiologia
2.
World J Gastrointest Surg ; 16(2): 628-634, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38463361

RESUMO

BACKGROUND: Collision tumors involving the small intestine, specifically the combination of a hamartomatous tumor and a lipoma, are extremely rare. To our knowledge, no previous case report has described a collision tumor composed of two benign tumors of different origins in the small intestine. CASE SUMMARY: Here, we present the case of an 82-year-old woman who presented with hemorrhagic shock and was found to have a mass measuring approximately 50 mm × 32 mm × 30 mm in the terminal ileum. Based on computed tomography scan findings, the mass was initially suspected to be a lipoma. A subsequent colonoscopy revealed a pedunculated submucosal elevation consisting of two distinct parts with a visible demarcation line. A biopsy of the upper portion suggested a juvenile polyp (JP). Owing to the patient's advanced age, multiple comorbidities, and poor surgical tolerance, a modified endoscopic submucosal dissection was performed. Histopathological examination of the excised mucosal mass revealed a lipoma at the base and a JP at the top, demonstrating evidence of rupture and associated bleeding. The patient's overall health remained satisfactory, with no recurrence of hematochezia during the six-month follow-up period. CONCLUSION: This case report provides new evidence for the understanding of gastrointestinal collision tumors, emphasizing their diverse clinical presentations and histopathological characteristics. It also offers diagnostic and therapeutic insights as well as an approach for managing benign collision tumors.

3.
Ecotoxicol Environ Saf ; 273: 116079, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377778

RESUMO

Nicotine, an addictive component of cigarettes, causes cognitive defects, particularly when exposure occurs early in life. However, the exact mechanism through which nicotine causes toxicity and alters synaptic plasticity is still not fully understood. The aim of the current study is to examine how non-coding developmental regulatory RNA impacts the hippocampus of mice offspring whose mothers were exposed to nicotine. Female C57BL/6J mice were given nicotine water from one week before pregnancy until end of lactation. Hippocampal tissue from offspring at 20 days post-birth was used for LncRNA and mRNA microarray analysis. Differential expression of LncRNAs and mRNAs associated with neuronal development were screened and validated, and the CeRNA pathway mediating neuronal synaptic plasticity GM13530/miR-7119-3p/mef2c was predicted using LncBase Predicted v.2. Using protein immunoblotting, Golgi staining and behavioral tests, our findings revealed that nicotine exposure in offspring mice increased hippocampal NMDAR receptor, activated receptor-dependent calcium channels, enhanced the formation of NMDAR/nNOS/PSD95 ternary complexes, increased NO synthesis, mediated p38 activation, induced neuronal excitability toxicity. Furthermore, an epigenetic CeRNA regulatory mechanism was identified, which suppresses Mef2c-mediated synaptic plasticity and leads to modifications in the learning and social behavior of the offspring during adolescence. This study uncovers the way in which maternal nicotine exposure results in neurotoxicity in offspring.


Assuntos
Nicotina , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Camundongos , Animais , Feminino , Nicotina/toxicidade , Nicotina/metabolismo , 60414 , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Camundongos Endogâmicos C57BL , Exposição Materna/efeitos adversos , Hipocampo/metabolismo
5.
Food Sci Nutr ; 12(1): 340-353, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268892

RESUMO

There is an inseparable link between bone metabolism and gut microbiota, and the supplementation of probiotics exhibits a significant role in maintaining the homeostasis of gut microbiota and inhibiting bone loss. This study aims to explore the preventive and therapeutic potentials and the specific mechanisms of Rothia on osteoporosis. The mice models of osteoporosis induced by ovariectomy (OVX) were built, and the regular (once a day) and quantitative (200 µL/d) gavage of Rothia was performed for 8 weeks starting from 1 week after OVX. Microcomputed tomography was used to analyze the bone mass and bone microstructure of mice in each group after sacrifice. Histological staining and immunohistochemistry were then applied to identify the expression of pro-inflammatory cytokines, intestinal permeability, and osteogenic and osteoclastic activities of mice. The collected feces of mice in each group were used for 16S rRNA high-throughput sequencing to detect the alterations in composition, abundance, and diversity of gut microbiota. This study demonstrated that the gavage of Rothia alleviated bone loss in mice with OVX-induced osteoporosis, improved OVX-induced intestinal mucosal barrier injury, optimized intestinal permeability (zonula occludens protein 1 and occludin), reduced intestinal inflammation (tumor necrosis factor-α and interleukin-1ß), and regulated imbalance of gut microbiota. Based on "gut-bone" axis, this study revealed that regular and quantitative gavage of Rothia can relieve bone loss in mice with OVX-induced osteoporosis by repairing the intestinal mucosal barrier injury, optimizing the intestinal permeability, inhibiting the release of pro-inflammatory cytokines, and improving the disorder of gut microbiota.

6.
Ecotoxicol Environ Saf ; 271: 115972, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218105

RESUMO

Coal worker's pneumoconiosis (CWP) is a common occupational disease that coal miners are highly susceptible due to long-term exposure to coal dust particles (CDP). CWP can induce the accumulation of immune cells surrounding the bronchioles and alveoli in the lungs, resulting in pulmonary fibrosis and compromised immune function. Using single-cell RNA sequencing (scRNA-Seq), our previous studies disclose that CDP exposure triggers heterogeneity of transcriptional profiles in mouse pneumoconiosis, while Vitamin D3 (VitD3) supplementation reduces CDP-induced cytotoxicity; however, the mechanism by which how VitD3 regulates immune status in coal pneumoconiosis remains unclear. In this study, we elucidated the heterogeneity of pulmonary lymphocytes in mice exposed to CDP and demonstrated the therapeutic efficacy of VitD3 using scRNA-Seq dataset. The validation of key lymphocyte markers and their functional molecules was performed using immunofluorescence. The results demonstrated that VitD3 increased the number of naive T cells by modulating CD4 + T cell differentiation and decreased the number of Treg cells in CDP-exposed mice, thereby enhancing the cytotoxic activity of CD8 + effector T cells. These effects markedly alleviated lung fibrosis and symptoms. Taken together, the mechanism by which VitD3 regulates the functions of lymphocytes in CWP provides a new perspective for further research on the prevention and treatment of CWP.


Assuntos
Antracose , Minas de Carvão , Pneumoconiose , Fibrose Pulmonar , Animais , Camundongos , Pneumoconiose/diagnóstico , Fibrose Pulmonar/induzido quimicamente , Carvão Mineral , Tolerância Imunológica
7.
Int J Biol Macromol ; 261(Pt 1): 129238, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278388

RESUMO

Wound infection is a predominant etiological factor contributing to delayed wound healing in open wounds. Hence, it holds paramount clinical significance to devise wound dressings endowed with superior antibacterial properties. In this study, a Schiff base-crosslinked aerogel comprising sodium alginate oxide (OSA), carboxymethyl chitosan (CMCS), and Nb2C@Ag/PDA (NAP) was developed. The resultant OSA/CMCS-Nb2C@Ag/PDA (OC/NAP) composite aerogel exhibited commendable attributes including exceptional swelling characteristics, porosity, biocompatibility, and sustained antimicrobial efficacy. In vitro antimicrobial assays unequivocally demonstrated that the OC/NAP composite aerogel maintained nearly 100 % inhibition of Staphylococcus aureus and Escherichia coli under an 808 nm laser even after 25 h. Crucially, the outcomes of in vivo infected wound healing experiments demonstrated that the wound healing rate of the OC/NAP composite aerogel group reached approximately 100 % within a span of 14 days, which was significantly greater than that of the blank control group. In vitro and in vivo hemostatic experiments also revealed that the composite aerogel had excellent hemostatic properties. The results of this study demonstrate the remarkable potential of OC/NAP aerogel as a multifunctional clinical wound dressing, especially for infected wounds.


Assuntos
Quitosana , Hemostáticos , Nitritos , Elementos de Transição , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Alginatos/farmacologia , Antibacterianos/farmacologia , Quitosana/farmacologia , Escherichia coli , Hidrogéis
8.
Ecotoxicol Environ Saf ; 269: 115767, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039851

RESUMO

Inhaling silica causes the occupational illness silicosis, which mostly results in the gradual fibrosis of lung tissue. Previous research has demonstrated that hypoxia-inducible factor-1α (HIF-1α) and glycolysis-related genes are up-regulated in silicosis. The role of 2-deoxy-D-glucose (2-DG) as an inhibitor of glycolysis in silicosis mouse models and its molecular mechanisms remain unclear. Therefore, we used 2-DG to observe its effect on pulmonary inflammation and fibrosis in a silicosis mouse model. Furthermore, in vitro cell experiments were conducted to explore the specific mechanisms of HIF-1α. Our study found that 2-DG down-regulated HIF-1α levels in alveolar macrophages induced by silica exposure and reduced the interleukin-1ß (IL-1ß) level in pulmonary inflammation. Additionally, 2-DG reduced silica-induced pulmonary fibrosis. From these findings, we hypothesize that 2-DG reduced glucose transporter 1 (GLUT1) expression by inhibiting glycolysis, which inhibits the expression of HIF-1α and ultimately reduces transcription of the inflammatory cytokine, IL-1ß, thus alleviating lung damage. Therefore, we elucidated the important regulatory role of HIF-1α in an experimental silicosis model and the potential defense mechanisms of 2-DG. These results provide a possible effective strategy for 2-DG in the treatment of silicosis.


Assuntos
Pneumonia , Fibrose Pulmonar , Silicose , Animais , Camundongos , Desoxiglucose/farmacologia , Desoxiglucose/metabolismo , Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Macrófagos Alveolares , Pneumonia/metabolismo , Fibrose Pulmonar/metabolismo , Dióxido de Silício/toxicidade , Silicose/tratamento farmacológico , Silicose/metabolismo
9.
Biomater Res ; 27(1): 120, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996880

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive, metastatic and apparently drug-resistant subtype of breast cancer with a higher immune response compared to other types of breast cancer. Photodynamic therapy (PDT) has been gaining popularity for its non-invasive nature, minimal side effects, and spatiotemporally controlled benifits. The use of metal-organic frameworks (MOFs) loaded with programmed death-ligand 1 inhibitors (iPD-L1) offers the possibility of combining PDT with immunotherapy. METHOD: Here, we construct PCN-224, a MOFs with good biocompatibility and biodegradability for the delivery of the PD-L1 small molecule inhibitor BMS-202 to achieve a synergistic anti-tumor strategy of PDT and immunotherapy. Hyaluronic acid (HA) modified PEG (HA-PEG) was synthesized for the outer layer modification of the nanocomplex, which prolongs its systemic circulation time. RESULTS: In vitro cellular experiments show that the nanocomplexes irradiated by 660 nm laser has a strong ability to produce singlet oxygen, which effectively induce PDT. PDT with strong immunogenicity leads to tumor necrosis and apoptosis, and induces immunogenic cell death, which causes tumor cells to release danger associated molecular patterns. In combination with iPD-L1, the combination therapy stimulates dendritic cell maturation, promotes T-cell activation and intratumoral infiltration, and reshapes the tumor immune microenvironment to achieve tumor growth inhibition and anti-distant tumor progression. CONCLUSIONS: MOFs-based nano-systems as a platform for combination therapy offer a potentially effective strategy for the treatment of TNBC with high metastatic rates.

10.
CNS Neurosci Ther ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864452

RESUMO

AIMS: Exposure to crystalline silica (CS) in occupational settings induces chronic inflammation in the respiratory system and, potentially, the brain. Some workers are frequently concurrently exposed to both CS and nicotine. Here, we explored the impact of nicotine on CS-induced neuroinflammation in the mouse hippocampus. METHODS: In this study, we established double-exposed models of CS and nicotine in C57BL/6 mice. To assess depression-like behavior, experiments were conducted at 3, 6, and 9 weeks. Serum inflammatory factors were analyzed by ELISA. Hippocampus was collected for RNA sequencing analysis and examining the gene expression patterns linked to inflammation and cell death. Microglia and astrocyte activation and hippocampal neuronal death were assessed using immunohistochemistry and immunofluorescence staining. Western blotting was used to analyze the NF-κB expression level. RESULTS: Mice exposed to CS for 3 weeks showed signs of depression. This was accompanied by elevated IL-6 in blood, destruction of the blood-brain barrier, and activation of astrocytes caused by an increased NF-κB expression in the CA1 area of the hippocampus. The elevated levels of astrocyte-derived Lcn2 and upregulated genes related to inflammation led to higher neuronal mortality. Moreover, nicotine mitigated the NF-κB expression, astrocyte activation, and neuronal death, thereby ameliorating the associated symptoms. CONCLUSION: Silica exposure induces neuroinflammation and neuronal death in the mouse hippocampal CA1 region and depressive behavior. However, nicotine inhibits CS-induced neuroinflammation and neuronal apoptosis, alleviating depressive-like behaviors in mice.

11.
ACS Appl Mater Interfaces ; 15(36): 42209-42226, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37605506

RESUMO

In developing countries, the incidence of colorectal cancer (CRC) is on the rise. The combination of programmed cell death ligand-1 (PD-L1) siRNA (siPD-L1) and mild photothermal therapy (PTT) is a promising strategy for CRC treatment. In this study, dopamine-modified polyethylenimine (PEI) was prepared to fabricate an IR780 and siPD-L1 codelivery lipid-polymer hybrid nanoparticle (lip@PSD-siP) for the photothermal immunotherapy of CRC. The modification of dopamine can significantly reduce the cytotoxicity of PEI. lip@PSD-siP can be effectively taken up by CT26 cells and successfully escaped from lysosomes after entering the cells for 4 h. After CT26 cells were transfected with lip@PSD-siP, the PD-L1 positive cell rate decreased by 82.4%, and its PD-L1 knockdown effect was significantly stronger than the positive control Lipo3000-siP. In vivo studies showed that lip@PSD-siP-mediated mild PTT and efficient PD-L1 knockdown exhibited primary and distal tumor inhibition, metastasis delay, and rechallenged tumor inhibition. The treatment with lip@PSD-siP significantly promoted the maturation of dendritic cells in lymph nodes. The amount of T cell infiltration in the tumor tissues increased significantly, and the frequency of CD8+ T cells and CD4+ T cells was significantly higher than that of other groups. The percentage of immunosuppressive regulatory cells (Tregs) in the tumor tissue on the treatment side decreased by 88% compared to the PBS group, and the proportion of CD8+CD69+ T cells in the distal tumor tissue was 2.8 times that of the PBS group. The memory T cells of mice in the long-term antitumor model were analyzed. The results showed that after treatment with lip@PSD-siP, the frequency of effector memory T cells (Tem cells) significantly increased, suggesting the formation of immune memory.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Animais , Camundongos , Antígeno B7-H1/genética , Dopamina , Imunoterapia , Lipídeos
12.
Am J Clin Nutr ; 118(1): 183-193, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37127109

RESUMO

BACKGROUND: Although substantial evidence reveals that healthy lifestyle behaviors are associated with a lower risk of rheumatoid arthritis (RA), the underlying metabolic mechanisms remain unclear. OBJECTIVES: This study aimed to identify the metabolic signature reflecting a healthy lifestyle and investigate its observational and genetic linkage with RA risk. METHODS: This study included 87,258 UK Biobank participants (557 cases with incident RA) aged 37-73 y with complete lifestyle, genotyping, and nuclear magnetic resonance (NMR) metabolomics data. A healthy lifestyle was assessed based on 5 factors: healthy diet, regular exercise, not smoking, moderate alcohol consumption, and normal body mass index. The metabolic signature was developed by summing the selected metabolites' concentrations weighted by the coefficients using elastic net regression. We used the multivariate Cox model to assess the associations between metabolic signatures and RA risk, and examined the mediating role of the metabolic signature in the impact of a healthy lifestyle on RA. We performed genome-wide association analysis (GWAS) to obtain genetic variants associated with the metabolic signature and then conducted Mendelian randomization (MR) analyses to detect causality. RESULTS: The metabolic signature comprised 81 metabolites, robustly correlated with a healthy lifestyle (r = 0.45, P = 4.2 × 10-15). The metabolic signature was inversely associated with RA risk (HR per standard deviation (SD) increment: 0.76; 95% CI: 0.70-0.83), and largely explained the protective effects of healthy lifestyle on RA with 64% (95% CI: 50.4-83.3) mediation proportion. 1- and 2-sample MR analyses also consistently showed the associations of genetically inferred per SD increment in metabolic signature with a reduction in RA risk (HR: 0.84; 95% CI: 0.75-0.94; and P = 0.002 and OR: 0.84; 95% CI: 0.73-0.97; and P = 0.02, respectively). CONCLUSIONS: Our findings implicate that the metabolic signature reflecting healthy lifestyle is a potential causal mediator in the development of RA, highlighting the importance of early lifestyle intervention and metabolic status tracking for precise prevention of RA.


Assuntos
Artrite Reumatoide , Análise da Randomização Mendeliana , Humanos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Artrite Reumatoide/genética , Estilo de Vida Saudável
13.
ACS Nano ; 17(10): 9126-9139, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37097811

RESUMO

Administration of bispecific antibodies (biAbs) in tumor therapy is limited by their short half-life and off-target toxicity. Optimized strategies or targets are needed to overcome these barriers. B7-H3 (CD276), a member of the B7 superfamily, is associated with poor survival in glioblastoma (GBM) patients. Moreover, a dimer of EGCG (dEGCG) synthesized in this work enhanced the IFN-γ-induced ferroptosis of tumor cells in vitro and in vivo. Herein, we prepared recombinant anti-B7-H3×CD3 biAbs and constructed MMP-2-sensitive S-biAb/dEGCG@NPs to offer a combination treatment strategy for efficient and systemic GBM elimination. Given their GBM targeted delivery and tumor microenvironment responsiveness, S-biAb/dEGCG@NPs displayed enhanced intracranial accumulation, 4.1-, 9.5-, and 12.3-fold higher than that of biAb/dEGCG@NPs, biAb/dEGCG complexes, and free biAbs, respectively. Furthermore, 50% of GBM-bearing mice in the S-biAb/dEGCG@NP group survived longer than 56 days. Overall, S-biAb/dEGCG@NPs can induce GBM elimination by boosting the ferroptosis effect and enhancing immune checkpoint blockade (ICB) immunotherapy and may be successful antibody nanocarriers for enhanced cancer therapy.


Assuntos
Anticorpos Biespecíficos , Ferroptose , Glioblastoma , Camundongos , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Glioblastoma/tratamento farmacológico , Metaloproteinase 2 da Matriz , Imunoterapia , Microambiente Tumoral
14.
Trials ; 24(1): 280, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37069686

RESUMO

INTRODUCTION: Postoperative pulmonary complications (PPCs) are prevalent in geriatric patients with hip fractures. Low oxygen level is one of the most important risk factors for PPCs. Prone position has been proven efficacy in improving oxygenation and delaying the progress of pulmonary diseases, especially in patients with acute respiratory distress syndrome induced by multiple etiologies. The application of awake prone position (APP) has also attracted widespread attention in recent years. A randomized controlled trial (RCT) will be carried out to measure the effect of postoperative APP in a population of geriatric patients undergoing hip fracture surgery. METHODS: This is an RCT. Patients older than 65 years old admitted through the emergency department and diagnosed with an intertrochanteric or femoral neck fracture will be eligible for enrollment and assigned randomly to the control group with routine postoperative management of orthopedics or APP group with an additional prone position for the first three consecutive postoperative days (PODs). Patients receiving conservative treatment will not be eligible for enrollment. We will record the difference in the patient's room-air-breathing arterial partial pressure of oxygen (PaO2) values between the 4th POD (POD 4) and emergency visits, the morbidity of PPCs and other postoperative complications, and length of stay. The incidence of PPCs, readmission rates, and mortality rates will be followed up for 90 PODs. DISCUSSION: We describe the protocol for a single-center RCT that will evaluate the efficacy of postoperative APP treatment in reducing pulmonary complications and improving oxygenation in geriatric patients with hip fractures. ETHICS AND DISSEMINATION: This protocol was approved by the independent ethics committee (IEC) for Clinical Research of Zhongda Hospital, Affiliated to Southeast University, and is registered on the Chinese Clinical Trial Registry. The findings of the trial will be disseminated through peer-reviewed journals. ETHICS APPROVAL NUMBER: 2021ZDSYLL203-P01 TRIAL REGISTRATION: ChiCTR ChiCTR2100049311 . Registered on 29 July 2021. TRIAL STATUS: Recruiting. Recruitment is expected to be completed in December 2024.


Assuntos
Fraturas do Quadril , Vigília , Humanos , Idoso , Decúbito Ventral , Pulmão , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Oxigênio , Fraturas do Quadril/cirurgia , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Microorganisms ; 11(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37110373

RESUMO

It has been demonstrated that the disturbance of gut microbiota (GM) is closely related to the reduction of bone mass and incidence of osteoporosis (OP). The aim of this study is to investigate whether the supplementation of Prevotella histicola (Ph) can prevent the bone loss in mice with ovariectomy (OVX)-mediated OP, and further explore relevant mechanisms. Regular (once a day for 8 consecutive weeks) and quantitative (200 µL/d) perfusion of Ph (the bacteria that orally gavaged) was conducted starting from 1 week after the construction of mice models. Bone mass and bone microstructure were detected by Micro-computed tomography (Micro-CT). Expressions of intestinal permeability, pro-inflammatory cytokines, and osteogenic and osteoclastic activities of mice were analyzed by histological staining and immunohistochemistry (IHC). 16S rRNA high throughput sequencing technique was applied to analyze the alterations of composition, abundance, and diversity of collected feces. Regular and quantitative perfusion of Ph mitigated the bone loss in mice with OVX-mediated OP. Compared with OVX + PBS group, perfusion of Ph repressed osteoclastogenesis and promoted osteogenesis, reduced release of pro-inflammatory cytokine cytokines (interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α)), and reversed expressions of tight junction proteins (zonula occludens protein 1 (ZO-1) and Occludin). Besides, the perfusion of Ph improved the composition, abundance, and diversity of GM. Collectively, this study revealed that regular and quantitative perfusion of Ph can improve the bone loss in mice with OVX-mediated OP by repairing intestinal mucosal barrier damage, optimizing intestinal permeability, inhibiting release of pro-osteoclastogenic cytokines, and improving disturbance of GM.

16.
J Bone Miner Metab ; 41(2): 145-162, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36912997

RESUMO

Osteoporosis (OP) is the most prevalent metabolic bone disease, characterized by the low bone mass and microarchitectural deterioration of bone tissue. Glucocorticoid (GC) clinically acts as one of the anti-inflammatory, immune-modulating, and therapeutic drugs, whereas the long-term use of GC may cause rapid bone resorption, followed by prolonged and profound suppression of bone formation, resulting in the GC-induced OP (GIOP). GIOP ranks the first among secondary OP and is a pivotal risk for fracture, as well as high disability rate and mortality, at both societal and personal levels, vital costs. Gut microbiota (GM), known as the "second gene pool" of human body, is highly correlated with maintaining the bone mass and bone quality, and the relation between GM and bone metabolism has gradually become a research hotspot. Herein, combined with recent studies and based on the cross-linking relationship between GM and OP, this review is aimed to discuss the potential mechanisms of GM and its metabolites on the OP, as well as the moderating effects of GC on GM, thereby providing an emerging thought for prevention and treatment of GIOP.


Assuntos
Conservadores da Densidade Óssea , Microbioma Gastrointestinal , Osteoporose , Humanos , Glucocorticoides/farmacologia , Osteoporose/tratamento farmacológico , Densidade Óssea , Conservadores da Densidade Óssea/uso terapêutico
17.
J Vis Exp ; (193)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36939260

RESUMO

Smoking and exposure to silica are common among occupational workers, and silica is more likely to injure the lungs of smokers than non-smokers. The role of nicotine, the primary addictive ingredient in cigarettes, in silicosis development is unclear. The mouse model employed in this study was simple and easily controlled, and it effectively simulated the effects of chronic nicotine ingestion and repeated exposure to silica on lung fibrosis through epithelial-mesenchymal transition in human beings. In addition, this model can help in the direct study of the effects of nicotine on silicosis while avoiding the effects of other components in cigarette smoke. After environmental adaptation, mice were injected subcutaneously with 0.25 mg/kg nicotine solution into the loose skin over the neck every morning and evening at 12 h intervals over 40 days. Additionally, crystalline silica powder (1-5 µm) was suspended in normal saline, diluted to a suspension of 20 mg/mL, and dispersed evenly using an ultrasonic water bath. The isoflurane-anesthetized mice inhaled 50 µL of this silica dust suspension through the nose and were awoken via chest massage. Silica exposure was administrated daily on days 5-19. The double-exposed mouse model was exposed to nicotine and then silica, which matches the exposure history of workers who are exposed to both harmful factors. In addition, nicotine promoted pulmonary fibrosis through epithelial-mesenchymal transformation (EMT) in mice. This animal model can be used to study the effects of multiple factors on the development of silicosis.


Assuntos
Fibrose Pulmonar , Silicose , Humanos , Camundongos , Animais , Dióxido de Silício , Nicotina/efeitos adversos , Transição Epitelial-Mesenquimal , Pulmão/patologia , Silicose/etiologia , Silicose/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Modelos Animais de Doenças
18.
Food Chem Toxicol ; 175: 113694, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36868510

RESUMO

The addictive substance nicotine, found in cigarettes and some e-cigarettes, plays a vital role in pro-inflammatory and fibrotic processes. However, the part played by nicotine in the progression of silica-induced pulmonary fibrosis is poorly understood. We used mice exposed to both silica and nicotine to investigate whether nicotine synergizes with silica particles to worsen lung fibrosis. The results revealed that nicotine accelerated the development of pulmonary fibrosis in silica-injured mice by activating STAT3-BDNF-TrkB signalling. Mice with a history of exposure to nicotine showed an increase in Fgf7 expression and alveolar type II cell proliferation if they were also exposed to silica. However, newborn AT2 cells could not regenerate the alveolar structure and release pro-fibrotic factor IL-33. Moreover, activated TrkB induced the expression of p-AKT, which promotes the expression of epithelial-mesenchymal transcription factor Twist, but no Snail. In vitro assessment confirmed activation of the STAT3-BDNF-TrkB pathway in AT2 cells, exposed to nicotine plus silica. In addition, TrkB inhibitor K252a downregulated p-TrkB and the downstream p-AKT and restricted the epithelial-mesenchymal transition caused by nicotine plus silica. In conclusion, nicotine activates the STAT3-BDNF-TrkB pathway, which promotes epithelial-mesenchymal transition and exacerbates pulmonary fibrosis in mice with combined exposure to silica particles and nicotine.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Dióxido de Silício/toxicidade , Nicotina/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transição Epitelial-Mesenquimal , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose
19.
Asian J Pharm Sci ; 18(2): 100781, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36818397

RESUMO

The combination of photothermal therapy with chemotherapy has gradually developed into promising cancer therapy. Here, a synergistic photothermal-chemotherapy nanoplatform based on polydopamine (PDA)-coated gold nanoparticles (AuNPs) were facilely achieved via the in situ polymerization of dopamine (DA) on the surface of AuNPs. This nanoplatform exhibited augmented photothermal conversion efficiency and enhanced colloidal stability in comparison with uncoated PDA shell AuNPs. The i-motif DNA nanostructure was assembled on PDA-coated AuNPs, which could be transformed into a C-quadruplex structure under an acidic environment, showing a characteristic pH response. The PDA shell served as a linker between the AuNPs and the i-motif DNA nanostructure. To enhance the specific cellular uptake, the AS1411 aptamer was introduced to the DNA nanostructure employed as a targeting ligand. In addition, Dox-loaded NPs (DAu@PDA-AS141) showed the pH/photothermal-responsive release of Dox. The photothermal effect of DAu@PDA-AS141 elicited excellent photothermal performance and efficient cancer cell inhibition under 808 nm near-infrared (NIR) irradiation. Overall, these results demonstrate that the DAu@PDA-AS141 nanoplatform shows great potential in synergistic photothermal-chemotherapy.

20.
J Pharm Anal ; 13(1): 99-109, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36816538

RESUMO

Traditional microtubule inhibitors fail to significantly enhance the effect of colorectal cancer; hence, new and efficient strategies are necessary. In this study, a supramolecular nanoreactor (DOC@TA-Fe3+) based on tannic acid (TA), iron ion (Fe3+), and docetaxel (DOC) with microtubule inhibition, reactive oxygen species (ROS) generation, and glutathione peroxidase 4 (GPX4) inhibition, is prepared for ferroptosis/apoptosis treatment. After internalization by CT26 cells, the DOC@TA-Fe3+ nanoreactor escapes from the lysosomes to release payloads. The subsequent Fe3+/Fe2+ conversion mediated by TA reducibility can trigger the Fenton reaction to enhance the ROS concentration. Additionally, Fe3+ can consume glutathione to repress the activity of GPX4 to induce ferroptosis. Meanwhile, the released DOC controls microtubule dynamics to activate the apoptosis pathway. The superior in vivo antitumor efficacy of DOC@TA-Fe3+ nanoreactor in terms of tumor growth inhibition and improved survival is verified in CT26 tumor-bearing mouse model. Therefore, the nanoreactor can act as an effective apoptosis and ferroptosis inducer for application in colorectal cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...